Лекция 2. Парная линейная регрессия.

Аннотация.В данной лекции показано, как, используя соответствующие данные, можно получить количественное выражение гипотетического линейного соотношения между двумя переменными; объясняется важный принцип регрессионного анализа – метод наименьших квадратов; даются способы расчета параметров уравнения, а также их смысловая интерпретация.

Ключевые слова:уравнение регрессии, остаток (случайный член уравнения), метод наименьших квадратов, коэффициент регрессии, коэффициент детерминации.

 

Рассматриваемые вопросы

1. Проблема оценивания линейной связи экономических переменных

2. Модель парной линейной регрессии

3. Регрессия по методу наименьших квадратов

4. Интерпретация уравнения регрессии

5. Качество оценки: коэффициент R2

Модульная единица 2. Парная линейная регрессия.

Цели и задачи изучения модульной единицы.В результате изучения данного раздела студенты должны уметь определять параметры уравнения регрессии, давать им смысловую интерпретацию, оценивать качество модели.

 

2.1. Проблема оценивания линейной связи экономических переменных.

Проблема изучения взаимосвязей экономических показателей является одной из важнейших проблем экономического анализа. Любая экономическая политика заключается в регулировании экономических переменных, и она должна основываться на знании того, как эти переменные влияют на другие переменные, являющиеся ключевыми для принимающего решения политика. Так, в рыночной экономике нельзя непосредственно регулировать темп инфляции, но на него можно воздействовать средствами бюджетно-налоговой и кредитно-денежной политики. Поэтому, в частности, должна быть изучена зависимость между предложением денег и уровнем цен. Невозможно строить, проверять или улучшать экономические модели без статистического анализа их переменных с использованием реальных статистических данных. Вся сфера экономических исследований может быть в определенном смысле охарактеризована как изучение взаимосвязей экономических переменных, и инструментарием их базового анализа являются методы статистики и эконометрики.

Изучение зависимостей двух экономических переменных начнем со случая двух переменных (обозначим их х и у). Этот случай наиболее прост и может быть рассмотрен графически. Предположим, что имеются ряды значений переменных, соответствующие им точки нанесены на график и соединены линией. Если это реальные статистические данные, то мы никогда не получим простую линию - линейную, квадратичную, экспоненциальную и т.д. Всегда будут присутствовать отклонения зависимой переменной, вызванные ошибками измерения, влиянием неучтенных величин или случайных факторов. Но если мы не получили, например, точную прямую линию, это еще не значит, что в основе рассматриваемой зависимости лежит нелинейная функция. Возможно, зависимость переменных линейна и лишь случайные факторы приводят к некоторым отклонениям от нее. То же самое можно сказать и про другой вид функции.

Связь переменных, на которую накладывается воздействие случайных факторов, называется статистической связью. Наличие такой связи заключается в том, что изменение одной переменной приводят к изменению математического ожидания другой переменной. Можно указать два типа взаимосвязей между переменными х и у. В одном случае может быть неизвестно, какая из двух переменных является независимой, и какая - зависимой. В этом случае переменные равноправны, и имеет смысл говорить о статистической взаимосвязи корреляционного типа. Оценка и анализ парной корреляции уже рассматривались в прошлой лекции. Другая ситуация возникает, если две исследуемые переменные не равноправны, но одна из них рассматривается как объясняющая ( или независимая), а другая как объясняемая (или зависящая от первой ). Если это так, то изменение одной из переменных служит причиной изменения другой. Например, рост дохода ведет к увеличению потребления; снижение процентной ставки увеличивает инвестиции; увеличение валютного курса сокращает экспорт. Это - тот случай, когда должно быть оценено уравнение регрессии y=f(x) . Уравнение регрессии - это формула статистической связи между переменными. Если эта формула линейна, то речь идет о линейной регрессии. Формула статистической связи двух переменных называется парной регрессией, зависимость от нескольких переменных - множественной регрессией.

Выбор формулы связи переменных называется спецификацией уравнения регрессии; в данном случае выбрана линейная формула. Однако до тех пор, пока не оценены количественные значения параметров уравнения, не проверена надежность сделанных оценок, эта формула остается лишь гипотезой. Оценка значений параметров выбранной формулы статистической связи переменных называется параметризацией уравнения регрессии. Как же оценить значения параметров и проверить надежность оценок? Рассмотрим вначале рисунок 2.1 (слайд).

Здесь изображены три ситуации:

1) на графике (а) взаимосвязь х и у близка к линейной; прямая линия (1) здесь близка к точкам наблюдений, и последние отклоняются от нее лишь в результате небольших случайных воздействий ;

 

2) на графике (b) реальная взаимосвязь величин х и у описывается нелинейной функцией (2), и какую бы мы ни провели прямую линию (например,1), отклонения точек наблюдений от нее будут существенными и неслучайными;

3) на графике (с) явная взаимосвязь между переменными х и у отсутствует. Какую бы мы ни выбрали формулу связи, результаты ее параметризации здесь будут неудачными. В частности, прямые линии 1 и 2 , проведенные через "центр" "облака" точек наблюдений и имеющие противоположный наклон, одинаково плохи для того, чтобы делать выводы об ожидаемых значениях переменной у по значениям переменной х.

В данной лекции показано, как, используя соответствующие данные, можно получить количественное выражение гипотетического линейного соотношения между двумя переменными. В лекции объясняется важный принцип регрессионного анализа — метод наименьших квадратов, а также выводятся формулы, выражающие коэффициенты регрессии.

 

2.2. Модель парной линейной регрессии.

Коэффициент корреляции показывает, что две переменные связаны друг с другом, однако он не дает представления о том, каким образом они связаны. Рассмотрим более подробно те случаи, для которых мы предполагаем, что одна переменная зависит от другой.

Сразу же отметим, что не следует ожидать получения точного соотношения между какими-либо двумя экономическими показателями, за исключением тех случаев, когда оно существует по определению. В учебниках по экономической теории эта проблема обычно решается путем приведения соотношения, как если бы оно было точным, и предупреждения читателя о том, что это аппроксимация. В статистическом анализе, однако, факт неточности соотношения признается путем явного включения в него случайного фактора, описываемого случайным остаточным членом. Начнем с рассмотрения простейшей модели:

y=a +b x+u (2.1)

Величина у, рассматриваемая как зависимая переменная, состоит из двух составляющих: 1) неслучайной составляющей a + b x , где x выступает как объясняющая (или независимая) переменная, а постоянные величины a и b — как параметры уравнения; 2) случайного члена и.

На рис. 2.2 (слайд) показано, как комбинация этих двух составляющих определяет величину у. Показатели х1, х2, х3, х4 - это четыре гипотетических значения объясняющей переменной. Если бы соотношение между у и х было точным, то соответствующие значения у были бы представлены точками Q1, Q2, Q3, Q4 на прямой. Наличие случайного члена приводит к тому, что в действительности значение у получается другим. Предполагалось, что случайный член возмущения положителен в первом и четвертом наблюдениях и отрицателен в двух других. Поэтому если отметить на графике реальные значения у при соответствующих значениях х, то мы получим точки P1, P2, P3, P4 .

Рис. 2.2.

Следует подчеркнуть, что точки Р — это единственные точки, отражающие реальные значения переменных на рис. 2. Фактические значения a и b и, следовательно, положения точек Q неизвестны, так же как и фактические значения случайного члена. Задача регрессионного анализа состоит в получении оценок a и b и, следовательно, в определении положения прямой по точкам Р. Очевидно, что чем меньше значения и, тем легче эта задача. Действительно, если бы случайный член отсутствовал вовсе, то точки Р совпали бы с точками Q и точно показали бы положение прямой. В этом случае достаточно было бы просто построить эту прямую и определить значения a и b.

Почему же существует случайный член? Имеется несколько причин. 1. Невключение объясняющих переменных. Соотношение между у и х почти наверняка является очень большим упрощением. В действительности существуют другие факторы, влияющие на у, которые не учтены в формуле (2.1). Влияние этих факторов приводит к тому, что наблюдаемые точки лежат вне прямой. В результате мы получаем то, что обозначено как и. Если бы мы точно знали, какие переменные присутствуют здесь, и имели возможность точно их измерить, то могли бы включить их в уравнение и исключить соответствующий элемент из случайного члена..

2. Агрегирование переменных. Во многих случаях рассматриваемая зависимость — это попытка объединить вместе некоторое число микроэкономических соотношений. Например, функция суммарного потребления — это попытка общего выражения совокупности решений отдельных индивидов о расходах. Так как отдельные соотношения, вероятно, имеют разные параметры, любая попытка определить соотношение между совокупными расходами и доходом является лишь аппроксимацией. Наблюдаемое расхождение при этом приписывается наличию случайного члена.

3. Неправильное описание структуры модели. Структура модели может быть описана неправильно или не вполне правильно. Здесь можно привести один из многих возможных примеров. Если зависимость относится к данным о временном ряде, то значение у может зависеть не от фактического значения х, а от значения, которое ожидалось в предыдущем периоде. Если ожидаемое и фактическое значения тесно связаны, то будет казаться, что между у и х существует зависимость, но это будет лишь аппроксимация. Расхождение вновь будет связано с наличием случайного члена.

4. Неправильная функциональная спецификация. Функциональное соотношение между у и х математически может быть определено неправильно. Например, истинная зависимость может не являться линейной, а быть более сложной. Безусловно, надо постараться избежать возникновения этой проблемы, используя подходящую математическую формулу, но любая самая изощренная формула является лишь приближением, и существующее расхождение вносит вклад в остаточный член.

5. Ошибки измерения. Если в измерении одной или более взаимосвязанных переменных имеются ошибки, то наблюдаемые значения не будут соответствовать точному соотношению, и существующее расхождение будет вносить вклад в остаточный член.

Остаточный член является суммарным проявлением всех этих факторов. Очевидно, что если бы нас интересовало только измерение влияния х на у, то было бы значительно удобнее, если бы остаточного члена не было. Если бы он отсутствовал, мы бы знали, что любое изменение у от наблюдения к наблюдению вызвано изменением х, и смогли бы точно вычислить b. Однако в действительности каждое изменение у отчасти вызвано изменением и, и это значительно усложняет жизнь.

 

2.3. Регрессия по методу наименьших квадратов.

Допустим, что вы имеете четыре наблюдения для х и у, представленные на рис. 2., и перед вами поставлена задача — определить значения a и b в уравнении (2.1). В качестве грубой аппроксимации вы можете сделать это, отложив четыре точки Р и построив прямую, в наибольшей степени соответствующую этим точкам. Это сделано на рис.2.3 (слайд).

 

Отрезок, отсекаемый прямой на оси у, представляет собой оценку a и обозначен а, а угловой коэффициент прямой представляет собой оценку b и обозначен b.

С самого начала необходимо признать, что вы никогда не сможете рассчитать истинные значения a и b при попытке построить прямую и определить положение линии регрессии. Вы можете получить только оценки, и они могут быть хорошими или плохими. Иногда оценки могут быть абсолютно точными, но это возможно лишь в результате случайного совпадения, и даже в этом случае у вас не будет способа узнать, что оценки абсолютно точны.

Это справедливо и при использовании более совершенных методов. Построение линии регрессии на глаз является достаточно субъективным. Более того, как мы увидим в дальнейшем, это просто невозможно, если переменная у зависит не от одной, а от двух или более независимых переменных. Возникает вопрос: существует ли способ достаточно точной оценки a и b алгебраическим путем?

Первым шагом является определение остатка для каждого наблюдения. За исключением случаев чистого совпадения, построенная вами линия регрессии не пройдет точно ни через одну точку наблюдения. Например, на рис.4 (слайд 2.4) при х = x1 соответствующей ему точкой на линии регрессии будет R1 со значением у, которое мы обозначим вместо фактически наблюдаемого значения у1. Величина описывается как расчетное значение у, соответствующее х1 . Разность между фактическим и расчетным значениями (у1 - )определяемая отрезком P1R1,, описывается как остаток в первом наблюдении. Обозначим его е1. Соответственно, для других наблюдений остатки будут обозначены как е2,, е3 и е4.

 

 

Очевидно, что мы хотим построить линию регрессии таким образом, чтобы эти остатки были минимальными. Очевидно также, что линия, строго соответствующая одним наблюдениям, не будет соответствовать другим, и наоборот. Необходимо выбрать такой критерий подбора, который будет одновременно учитывать величину всех остатков. Существует целый ряд возможных критериев, одни из которых «работают» лучше других. Например, бесполезно минимизировать сумму остатков. Сумма будет автоматически равна нулю, если вы сделаете равным , а равным нулю, получив горизонтальную линию . В этом случае положительные остатки точно уравновесят отрицательные, но строгой зависимости при этом не будет.

Один из способов решения поставленной проблемы состоит в минимизации суммы квадратов S. Для рис. 2.4 верно такое соотношение :

S = (2.2)

Величина S будет зависеть от выбора а и b, так как они определяют положение линии регрессии. В соответствии с этим критерием, чем меньше S, тем строже соответствие. Если S=0, то получено абсолютно точное соответствие, так как это означает, что все остатки равны нулю. В этом случае линия регрессии будет проходить через все точки, однако, вообще говоря, это невозможно из-за наличия случайного члена.

Существуют и другие достаточно разумные решения, однако при выполнении определенных условий метод наименьших квадратов дает несмещенные и эффективные оценки a и b. По этой причине метод наименьших квадратов является наиболее популярным в вводном курсе регрессионного анализа.

После построения линии регрессии стоит более детально рассмотреть общее выражение для остатка в каждом наблюдении. Логика этого рассмотрения является достаточно простой. Однако на первый взгляд она может показаться абстрактной, поэтому более наглядно графическое представление.

На рис. 5 (слайд 2.5) линия регрессии

(2.3)

построена по выборке наблюдений. Для того чтобы не загромождать график, показано только одно такое наблюдение: наблюдение i, представленное точкой Р c координатами (xi,,yi).

 

 

 

Когда х=хi линия регрессии предсказывает значение у= что соответствует точке R на графике, где

= a + bxi (2.4)

Используя условные обозначения, принятые на рис.5, это уравнение можно переписать следующим образом:

RT = ST + RS (2.5)

так как отрезок ST равен а, а отрезок RS равен bxi

Остаток PR — это разность между РТ и RT:

PR = PT - RT = PT - ST - RS (2.6)

Используя обычную математическую запись, представим формулу (6) в следующем виде:

ei = yi - = yi - a - bxi. (2.7)

Если бы в примере, показанном на графике (рис.5) мы выбрали несколько большее значение а или несколько большее значение b, то прямая прошла бы ближе к Р, и остаток ei был бы меньше. Однако это повлияло бы на остатки всех других наблюдений, и это необходимо учитывать. Минимизируя сумму квадратов остатков, мы попытаемся найти некоторое равновесие между ними.

Рассмотрим случай, когда имеется п наблюдений двух переменных х и у. Предположив, что у зависит от х, мы хотим подобрать уравнение:

= a + bx (2.8)

Расчетное значение зависимой переменной и остаток ei, для наблюдения i заданы уравнениями (2.4) и (2.7). Мы хотим выбрать а и b, чтобы минимизировать величину S, где S = åei2.

Можно доказать, что величина S минимальна, когда

(2.9)[1]

 

и (2.10)1

Варианты выражения для b.

Так как

(2.11)

 

и (2.12)

мы можем получить следующие выражения для b:

(2.13)

b = (2.14)

 

В дальнейшем будет использоваться первоначальное определение b=Cov(х,y)/Var(х) и это выражение, вероятно, легче всего запомнить. На практике для вычисления коэффициентов регрессии используется компьютер, поэтому нет смысла запоминать альтернативные выражения. Зная определения выборочной дисперсии и ковариации, вы всегда сможете вывести эти выражения.

 

2.4. Интерпретация уравнения регрессии.

Интерпретации уравнения регрессии состоит в словесном истолковании уравнения так, чтобы это было понятно человеку, не являющемуся специалистом в области статистики. Проиллюстрируем это моделью регрессии для функции спроса, т. е. регрессией между расходами потребителя на питание (у) и располагаемым личным доходом (x) по данным для США за период с 1959 по 1983 г. Данные представлены в виде графика (рис.2.6).

 

Предположим, что истинная модель описывается следующим выражением:

у = a + bх + и (2.15)

и оценена регрессия

= 55,3 + 0,093х . (2.16)

Полученный результат можно истолковать следующим образом. Коэффициент при х (коэффициент наклона) показывает, что если х увеличивается на одну единицу, то у возрастает на 0,093 единицы. Как х, так и у измеряются в миллиардах долларов в постоянных ценах; таким образом, коэффициент наклона показывает, что если доход увеличивается на 1 млрд. долл., то расходы на питание возрастают на 93 млн. долл. Другими словами, из каждого дополнительного доллара дохода 9,3 цента будут израсходованы на питание.

Что можно сказать о постоянной в уравнении, равной 55,3? Формально говоря, она показывает прогнозируемый уровень у, когда х = 0. Иногда это имеет ясный смысл, иногда нет. Если х = 0 находится достаточно далеко от выборочных значений х, то буквальная интерпретация может привести к неверным результатам; даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантии, что так же будет при экстраполяции влево или вправо (рис.2.6).

В рассматриваемом случае экстраполяция к вертикальной оси приводит к выводу о том, что если доход был бы равен нулю, то расходы на питание составили бы 55,3 млрд. долл. Такое толкование может быть правдоподобным в отношении отдельного человека, так как он может израсходовать на питание накопленные или одолженные средства. Однако оно не имеет никакого смысла применительно к совокупности. В данном случае константа выполняет единственную функцию: она позволяет определить положение линии регрессии на графике. Можно привести пример постоянной, которая имеет ясный смысл. По этим же данным (приложение 1) можно определить регрессионную зависимость расходов на питание у от времени, определенного как t = 1 для 1959 г., t =2 для 1960 г. и т.д. Она задана уравнением:

= 95,3 + 2,53 t. (2.17)

В этом уравнении постоянную 95,3 можно объяснить как расходы на питание при t = 0 для 1958 г.

При интерпретации уравнения регрессии чрезвычайно важно помнить о трех вещах. Во-первых, а является лишь оценкой a, а b — оценкой b. Поэтому вся интерпретация в действительности представляет собой лишь оценку. Во-вторых, уравнение регрессии отражает только общую тенденцию для выборки. При этом каждое отдельное наблюдение подвержено воздействию случайностей. В-третьих, верность интерпретации зависит от правильности спецификации уравнения.

В сущности, мы построили довольно наивную зависимость для функции спроса. Мы будем неоднократно возвращаться к этому в следующих разделах, уточняя как определение, так и статистические методы, используемые для оценки коэффициентов уравнения.

Подводя итог сказанному, можно представить интерпретацию линейного уравнения регрессии в виде реализации следующих шагов.

Во-первых, можно сказать, что увеличение х на одну единицу (в единицах измерения переменной х) приведет к увеличению значения у на b единиц (в единицах измерения переменной y). Вторым шагом является проверка, каковы действительно единицы измерения х и у, и замена слова «единица» фактическим количеством. Третьим шагом является проверка возможности более простого выражения результата, который может оказаться не вполне удобным. В примере, приведенном в данном разделе, в качестве единицы измерения для х и у использовались миллиарды долларов, что позволило произвести очевидные упрощения.

Постоянная а дает прогнозируемое значение y (в единицах y), если х= 0. Это может иметь или не иметь ясного смысла в зависимости от конкретной ситуации.

 

2.5. Качество оценки: коэффициент R2.

Цель регрессионного анализа состоит в объяснении поведения зависимой переменной у. В любой данной выборке у оказывается сравнительно низким в одних наблюдениях и сравнительно высоким — в других. Мы хотим знать, почему это так. Разброс значений у в любой выборке можно суммарно описать с помощью выборочной дисперсии Var (у).

В парном регрессионном анализе мы пытаемся объяснить поведение у путем определения регрессионной зависимости у от выбранной независимой переменной х. После построения уравнения регрессии мы можем разбить значение уi в каждом наблюдении на две составляющих — и еi.

yi = + ei (2.18)

Величина расчетное значение у в наблюдении i — это то значение, которое имел бы у при условии, что уравнение регрессии было правильным, и отсутствии случайного фактора. Это, иными словами, величина у, спрогнозированная по значению x в данном наблюдении. Остаток ei есть расхождение между фактическим и спрогнозированным значениями величины y. Это та часть у, которую мы не можем объяснить с помощью уравнения регрессии. Используя уравнение (2.18), разложим дисперсию у:

Var (y) = Var ( + e ) = Var ( ) + Var(e) + 2Cov ( ,e) (2.19)

Далее, Cov ( ,е) должна быть равна нулю. Следовательно, мы получаем:

Var (y) = Var ( ) + Var (e) (2.20)

Это означает, что мы можем разложить Var (у) на две части: Var ( ) часть, которая «объясняется» уравнением регрессии в вышеописанном смысле, и Var (е) — «необъясненную» часть.

Согласно (2.20), Var ( )/ Var (у) — это часть дисперсии y, объясненная уравнением регрессии. Это отношение известно как коэффициент детерминации, и его обычно обозначают R 2.

(2.21)

что равносильно

(2.22)

Слова «объясненный» и «необъясненный» взяты в кавычки, так как объяснение, в сущности, может быть мнимым. В действительности у может зависеть от какой-то другой переменной z, и х может действовать как величина, замещающая z . Поэтому вместо слова «объясненный» здесь лучше употреблять выражение «представляющийся объясненным».

Максимальное значение коэффициента детерминации равно единице. Это происходит в том случае, когда линия регрессии точно соответствует всем наблюдениям, так что = уi для всех i и все остатки равны нулю. Тогда Var ( ) = Var (у), Var (е) = О и R2 = 1.

Если в выборке отсутствует видимая связь между у и х, то коэффициент R2 будет близок к нулю.

При прочих равных условиях желательно, чтобы коэффициент R2 был как можно больше. В частности, мы заинтересованы в таком выборе коэффициентов а и b, чтобы максимизировать R2. Не противоречит ли это нашему критерию, в соответствии с которым а и b должны быть выбраны таким образом, чтобы минимизировать сумму квадратов остатков? Нет, легко показать, что эти критерии эквивалентны, если (2.22) используется как определение коэффициента R2. Отметим сначала, что

ei = yi - = yi - a -bxi (2.23)

откуда, беря среднее значение еi по выборке и используя уравнение (2.10), получим:

(2.24)

 

Следовательно,

(2.25) Отсюда следует, что принцип минимизации суммы квадратов остатков эквивалентен минимизации дисперсии остатков при условии выполнения (2.10). Однако если мы минимизируем Var(e), то при этом в соответствии с (2.22) автоматически максимизируется коэффициент R.2.

Альтернативное представление коэффициента R2

На интуитивном уровне представляется очевидным, что чем больше соответствие, обеспечиваемое уравнением регрессии, тем больше должен быть коэффициент корреляции для фактических и прогнозных значений y, и наоборот. Покажем, что R2 фактически равен квадрату такого коэффициента корреляции между у и , который мы обозначим (заметим, что Cov (е, у) = 0.

 

(2.26)

Вопросы для повторения

1. Раскройте понятие уравнения регрессии.

2. Что такое «остатки» в регрессионной модели, и каковы причины их существования?

3. Поясните сущность метода наименьших квадратов.

4. Как выглядит система нормальных уравнений в случае парной линейной регрессии?

5. Какие способы определения коэффициента регрессии Вы знаете?

6. Какова интерпретация коэффициента регрессии?

7. Есть ли смысловая интерпретация у свободного члена уравнения парной линейной регрессии?

8. Что показывает коэффициент детерминации?

9. Напишите смысловую формулу коэффициента детерминации.

10. Как связан коэффициент детерминации с линейным коэффициентом корреляции?

Резюме по модульной единице 2.

Простейшей математической моделью корреляционной связи является линейная связь между двумя признаками – парная линейная регрессия. Среди множества факторов, определяющих вариацию результативного признака, выделяют основной (главный) фактор. Линейная форма связи имеет наиболее широкое применение потому, что многие зависимости, нелинейные на большом протяжении значений фактора, близки к линейным на реально наблюдаемом интервале. Кроме того, парная корреляция рассматривается как начальный этап в изучении сложных многофакторных связей.

Тесты для самоконтроля

 

1. Связь переменных, на которую накладывается воздействие случайных факторов, называется

 

1) линейной 3) нелинейной
2) статистической (верно) 4) функциональной

 

2. Если увеличение независимой переменной приводит к росту среднего значения зависимой переменной, то такая связь называется

 

1) корреляционной 3) регрессионной (верно)
2) функциональной 4) независимой

 

3. Выбор формы уравнения и числа переменных называется

 

1) идентификацией 3) спецификацией (верно)
2) параметризацией 4) алгоритмизацией

 

4. Неслучайной переменной в уравнении регрессии y=a +b x+u является

 

1) y 3) x (верно)
2) a 4) u

 

5. Случайными величинами в уравнении регрессии y=a +b x+u являются

 

1) только y 4) y и u (верно)
2) только u 5) x и u
3) только x 6) y и x

 

6. Причинами возникновения остатка являются

 

1) неправильная спецификация (верно) 3) наличие тесной связи между переменными
2) ошибки идентификации 4) ошибки измерения переменных (верно)

 

7. Метод наименьших квадратов исходит из

 

1) максимизации суммы квадратов остатков 3) минимизации суммы квадратов остатков (верно)
2) минимизации суммы квадратов отклонений фактических значений зависимой переменной от своего среднего уровня 4) минимизации суммы квадратов разностей фактических значений зависимой и независимой переменных

 

8. Коэффициент полной регрессии рассчитывается по формуле:

 

1) (верно) 3) (верно)
2) (верно) 4)

 

9. Коэффициент парной линейной корреляции равен, если:

1) -0,9 3) 2
2) 0,9 (верно) 4) -2

 

10. Коэффициентом полной регрессии в уравнении y=a +b x+u является

1) y 3) b (верно)
2) a 4) u

 

11. Коэффициент полной регрессии в уравнении парной линейной регрессии это:

1) производная (верно) 3) коэффициент при независимой переменной (верно)
2) угол наклона линии регрессии (верно) 4) коэффициент при зависимой переменной

 

12. При исследовании влияния уровня инфляции (%) на потребление сыра (кг) получили следующую зависимость:

y=36 -2 x . Какие выводы можно сделать?

1) при увеличении потребления сыра на 1 кг инфляции снизится на 1% 4) при снижении инфляции на 1% потребление сыра увеличится на 2 кг (верно)
2) при росте инфляции на 1% потребление сыра возрастет на 2 кг 5) при сокращении потребления сыра на 1 кг инфляции возрастет на 1%
3) при росте инфляции на 1% потребление сыра сократится на 2 кг (верно) 6) при увеличении потребления сыра на 1 кг инфляции возрастет на 1%

 

13. Чему равно прогнозное (объясненное) значение потребления при 10% уровне инфляции, если при исследовании влияния уровня инфляции (%) на потребление сыра (кг) получили следующую зависимость:

y=36 -2 x .

1) 4 3) 26
2) 16 (верно) 4) 34

 

14. Как изменится потребление сыра при росте инфляции на 3% , если при исследовании влияния уровня инфляции (%) на потребление сыра (кг) получили следующую зависимость:

y=36 -2 x .

 

1) увеличится на 6 кг 3) уменьшится на 2 кг
2) уменьшится на 6 кг (верно) 4) увеличится на 2 кг

 

15. Метод наименьших квадратов позволяет получить оценки параметров уравнения регрессии:

 

1) смещенные 4)состоятельные (верно)
2) эффективные (верно) 5) неэффективные
3) несмещенные (верно) 4) несостоятельные

 

16. При изучении влияния уровня доходов домохозяйства (тыс. руб.) на расходы (тыс. руб.) получено выборочное уравнение регрессии y=2 +0,7 x. Обследованию подвергались домохозяйства с доходами от 10 тыс. руб. Какова интерпретация условного начала в уравнении регрессии?

 

1) если доходы увеличатся на 2 тыс. руб., то расходы тоже увеличатся на 2 тыс. 3) условное начало в этом случае является неинтерпретируемым (верно)
2) условное начало вообще никогда не интерпретируется 4) при увеличении доходов на 1 тыс. руб. расходы увеличатся на 700 рублей.

 

17. При изучении влияния уровня доходов домохозяйства (тыс. руб.) на расходы (тыс. руб.) получено выборочное уравнение регрессии y=2 +0,7 x. Обследованию подвергались домохозяйства с доходами от 10 тыс. руб. Как изменятся расходы, если доходы увеличатся на 200 рублей?

 

1) увеличатся на 1400 3) увеличатся на 142 рубля
2) уменьшатся на 142 рублей 4) увеличатся на 140рублей (верно)

 

18. Коэффициент детерминации изменяется в пределах:

1) как и коэффициент парной линейной корреляции от -1 до +1 3) от -1 до 0
2) от 0 до 1 (верно) 4) может принимать любые целочисленные значение

 

19. Чему равен коэффициент детерминации, если объясненная уравнением регрессии дисперсия составила 81, а остаточная – 19?

1) 0,81 (верно) 3) 4,3
2) 0,9 4) 0,23