Похожие публикации

Программа конференции 16 марта 09. 00 11. 00
Программа
Ваулин Сергей Дмитриевич — проректор по научной работе, д. т. н., профессор, член-корреспондент Российской академии ракетных и артиллерийских наук, пр...полностью>>

Заседание Дисциплинарного комитета под председательством директора ОАО «Воронежстрой-холдинг»
Заседание
В заседании принимали участие члены Дисциплинарного комитета: Долгова С. В. (ООО ТД «Воронежстройтермоизоляция»), Горюшин Н. А. (ООО «Техносистем»), Б...полностью>>

Урок технологии: сказка о принцессе иголочке тема урока: декоративно-прикладное творчество
Урок
ЦЕЛИ УРОКА: ознакомить учащихся с историей вышивки, композицией построения узора; научить шву «крест» и гобеленовому шву; формирование речетворческих ...полностью>>

I международного фестиваля актерской песни
Документ
с 15 по 21 октября 2013 года, г. Владикавказ; Академический русский театр им. Е. ВахтанговаЦЕЛИ И ЗАДАЧИ ФЕСТИВАЛЯ:- поддержка вокального творчества а...полностью>>



Методические указания и шаблон отчета к выполнению лабораторной работы по курсу «Материаловедение» Издательство

министерство образования и науки российской федерации Федеральное государственное бюджетное образовательное учреждение
высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
»

Утверждаю

Проректор-директор ИФВТ

А.Н. Яковлев

« » 2012 г.

А.Г. Багинский, Ю.А. Евтюшкин, Н.И. Фомин

ПЛАСТИЧЕСКАЯ ДЕФОРМАЦИЯ, НАКЛЕП

И РЕКРИСТАЛЛИЗАЦИЯ МЕТАЛЛОВ

Методические указания и шаблон отчета к выполнению лабораторной работы

по курсу «Материаловедение»

Издательство

Томского политехнического университета

2012

Цель работы

1. Изучить влияние пластической деформации на структуру и механические свойства металлов.

2. Изучить влияние нагрева на свойства деформированного металла.

Оборудование и материалы для выполнения работы

1. Нагревательные печи с термопарами и автоматическими приборами для регулирования температуры.

2. Пневматический ковочный молот.

3. Твердомеры Бринеля ТШ-2.

4. Образцы технически чистой меди.

Порядок выполнения работы

1. Ознакомиться с основными положениями работы.

2. Выполнить в соответствии с заданием экспериментальную часть работы.

3. Проанализировать полученные результаты и на основании теоретического материала сделать необходимые выводы.

4. Выполнить одну из задач (по указанию преподавателя) и пояснить решение.

Основные положения

1. Пластическая деформация металлов

Важнейшим и наиболее характерным свойством металлов является пластичность   способность претерпевать деформацию (изменять форму и размеры) без разрушения. В сочетании с высокой прочностью это свойство делает металлы незаменимыми для современной техники. Деформация, которая исчезает после снятия нагрузки,   это упругая деформация. Часть деформации, которая остается после снятия нагрузки,   это пластическая деформация. Чем больше остаточная деформация металла до разрушения, тем выше его пластичность.

При упругом деформировании под действием внешней силы изменяется расстояние между атомами, и в кристаллической решетке возникают дополнительные силы притяжения или отталкивания. Снятие нагрузки устраняет причину изменения межатомного расстояния, атомы становятся на прежние места под действием дополнительных сил, существующих между ними, и упругая деформация исчезает.

Значительно более сложно проходит процесс пластической деформации, которая осуществляется при напряжениях, больших предела упругости металла.

В конечном итоге пластическая деформация представляет собой сдвиг одной части кристалла относительно другой. Каков же механизм этого процесса? Естественно предположить одновременное смещение всех атомов одного слоя по отношению к атомам соседнего слоя по плоскости сдвига ММ (рис. 1) – так скользят бумажные листы в пачке бумаги при сдвиге ее верхней части. Усилие, которое надо приложить для осуществления такого сдвига, можно подсчитать и таким образом определить теоретическую прочность. Такой расчет был сделан Я.И. Френкелем, и получилось, что для железа прочность должна быть равна 1300 кгс/мм2, тогда как в действительности предел прочности железа 15 кгс/мм2, т. е. в 100 раз меньше.

Объяснение реального механизма сдвиговых процессов дает теория дислокаций – особого рода линейных несовершенств (дефектов) кристаллической решетки. Представления о дислокациях были введены в металлофизику для того, чтобы объяснить несоответствие между наблюдаемой и теоретической прочностью кристаллов и описать механизм скольжения атомных слоёв при пластической деформации кристаллов. Если на первых этапах развития этой теории представления о дислокациях были предположительными, то затем были получены прямые доказательства их существования, а в настоящее время имеются многочисленные данные наблюдения дислокаций.

Наиболее простой и наглядный способ образования дислокаций в кристалле – сдвиг (рис. 2, а). Если сдвиг произошел только в части плоскости скольжения и охватывает площадку ABCD, то граница AB между участком, где скольжение уже произошло, и ненарушенным участком в плоскости скольжения и будет дислокацией. Атомная плоскость, перпендикулярная к плоскости скольжения и проходящая через AB, является как бы лишней и ее называют экстраплоскостью, а дислокацию ABкраевой дислокацией, обозначаемой знаком .

Возможны и другие виды дислокаций, например, винтовая (рис. 3, а) или смешанная (рис. 4, а). Винтовая дислокация получила свое название из-за того, что кристалл при этом можно считать состоящим из одной атомной плоскости, закрученной по винтовой поверхности вокруг дислокации AB (рис. 3, а).

Нетрудно увидеть, что движение дислокаций через кристалл вызывает пластическую (необратимую) деформацию кристалла (рис. 2-4 б, в, г). Перемещение дислокаций происходит по схеме, изображенной на рис. 5.

Из схемы видно, что для перемещения дислокации на одно межатомное расстояние каждый атом экстраплоскости и плоскости в нижней части кристалла смещается на величину значительно меньше межатомного расстояния. При поочередном (эстафетном) смещении атомов дислокация скользит на большие расстояния, через весь кристалл, вызывая его пластическую деформацию.

При сдвиге одной части идеального кристалла относительно другой необходимо разорвать одновременно сразу все межатомные связи между граничными атомами по обе стороны от плоскости скольжения (рис. 1), а в реальном металле при перемещении дислокации по плоскости скольжения разрываются одновременно межатомные связи только между двумя соседними цепочками атомов (рис. 5). Именно этим объясняется более низкие значение сдвигающего напряжения и прочности у реальных металлов.


 – относительное

удлинение

в – предел прочности,

 = 0 %

 = 30 %

 = 60 %

Свойства: в, 

в

Деформация



Р
ис. 6. Изменение структуры и свойств деформированного металла

в зависимости от степени деформации

Интересно, что и в живой природе используется дислокационный принцип движения, например, змеи и гусеницы обычно ползают за счет образования складки («положительной дислокации») около хвоста и продвижения этой складки в сторону головы.

2. Наклеп и рекристаллизация металлов

Наиболее впечатляющим свойством металлов при пластической деформации является деформационное упрочнение, или способность металлов становиться прочнее при деформации. Из дислокационной теории следует, что для упрочнения металлов необходимо каким-либо образом затруднить движение дислокаций.

Существует несколько способов упрочнения или закрепления дислокаций, одним из них является упрочнение кристалла пластической деформацией. Ранее рассмотренный простейший способ введения дислокаций в кристалл при сдвиге показывает, что рост пластической деформации увеличивает количество дислокаций в кристалле. Чем сильнее воздействие на металл, тем больше в нем образуется дислокаций. На начальной стадии деформация происходит за счет скольжения относительно небольшого количества дислокаций. В процессе деформирования количество движущихся в кристалле дислокаций постоянно увеличивается, что затрудняют их скольжение. Возникают скопления дислокаций, которые уже неспособны перемещаться по кристаллу. Такие закрепленные дислокации затрудняют движение вновь возникающих дислокаций, т. е. упрочнение металла создается самими дислокациями. В этом случае говорят об упрочнении пластической деформацией или просто о наклепе металла.

П

Свойства: в, 

в

ластическая деформация оказывает существенное влияние на механические свойства металла и его структуру (рис. 6).

Р

Температура

Тр

ис. 7. Изменение структуры и свойств деформированного металла

при нагреве

На рис. 6 показано, как под действием приложенной нагрузки зерна, из которых состоят все технические металлы, начинают деформироваться и вытягиваться; объем зерен и их количество при этом не изменяется. Внутри каждого зерна, особенно по его границам, сосредотачивается большое количество дислокаций, плотность которых возрастает от 106–107 см-2 (для недеформированного металла) и до 1010–1012 см-2 (для деформированного). Кристаллическая решетка зерен становится искаженной (несовершенной), это состояние является структурно неустойчивым. С увеличением степени деформации прочность металла увеличивается, а пластичность уменьшается, что может привести к возникновению трещин и разрушению (при большой степени деформации).

Для снятия наклепа деформированный металл нагревают, в результате сначала происходят процессы возврата и полигонизации, приводящие к перераспределению и уменьшению концентрации структурных несовершенств (точечных и линейных дефектов) в кристаллической решетке. При дальнейшем повышении температуры начинается основной процесс, возвращающий наклепанный металл в устойчивое состояние – рекристаллизация. Это полная или частичная замена деформированных зерен данной фазы новыми, более совершенными зернами той же фазы (см. рис. 7). Новые зерна, зарождающиеся при рекристаллизации, отличаются меньшей плотностью дефектов (дислокаций) и растут за счет деформированных зерен. Рекристаллизация – диффузионный процесс, протекающий в течение какого-то времени (чем выше температура, тем быстрей).

Наименьшую температуру, при которой начинается процесс рекристаллизации и происходит разупрочнение, называют температурой рекристаллизации. Между температурой рекристаллизации (Тр) и температурой плавления (Тпл) металлов существует простая зависимость, определенная металловедом А.А. Бочваром:

Тр = Тпл (К).

Ниже приведена температура рекристаллизации металлов и сплавов:

Тр = (0,1  0,2)Тпл – для чистых металлов,

Тр = 0,4Тпл – для технически чистых металлов,

Тр = (0,5  0,6)Тпл – для сплавов (твердых растворов).

Т

Твердость, НВ

емпературу начала рекристаллизации определяют металлографическим и рентгеноструктурным методами, а также по изменению свойств. Если Тр определяют по изменению твердости, то за Тр принимают температуру, при которой прирост твердости, созданный деформацией, уменьшается вдвое (рис. 8).

Р

Температура нагрева

ис. 8. Определение температуры рекристаллизации

по изменению твердости при нагреве

Определение температуры рекристаллизации необходимо для назначения режимов рекристаллизационного отжига – термической обработки для снятия наклепа. Температура такого отжига должна быть выше температуры рекристаллизации для данного сплава.

Величина зерен после рекристаллизации (рекристаллизационного отжига) напрямую зависит от степени деформации металла при наклёпе (см. рис. 9).

Существует небольшая степень деформации (до 10 %), называемая критической, при которой размер образующегося при рекристаллизации зерна в несколько десятков раз превышает исходное, недеформированное зерно. Это явление очень часто встречается в деталях машин, в которых одновременно присутствует набор деформаций от 0 до больших степеней, и его следует учитывать, так как на участках с крупнозернистой структурой сильно снижается ударная вязкость. Хотя в некоторых других случаях, например, повышение жаропрочности, получение требуемых электромагнитных свойств, увеличение размера зерна является положительным.

Величина зерна

Деформация

крит.

Рис. 9. Влияние степени деформации на величину рекристаллизованнoго зерна

Формирование аномально крупных рекристаллизованных зёрен в области критической деформации обусловлено наличием малого числа центров рекристаллизации (центров новых зерен). Новые зёрна зарождаются в первую очередь там, где при наклёпе возникла наибольшая плотность дислокаций. Так как движущиеся дислокации задерживаются и скапливаются на границах зёрен, то именно здесь начнут образовываться и расти новые зерна в процессе рекристаллизации.

С увеличением степени деформации размер новых, образовавшихся зёрен уменьшается. Это связано с увеличением плотности дислокаций в деформированном металле и, соответственно, с увеличением числа центров рекристаллизации (центров новых зерен).

В зависимости от температуры, при которой выполняется обработка давлением, пластическую деформацию разделяют на холодную и горячую.

Холодная деформация – деформация металла, которая осуществляется при температуре ниже температуры рекристаллизации. При холодной деформации увеличивается плотность дислокаций, зерна вытягиваются в направлении деформации, увеличивается прочность металла и снижается пластичность.

Горячая деформация – деформация металла, которая осуществляется при температуре выше температуры рекристаллизации. При горячей деформации металла (прокатке, ковке, штамповке, прессовании) упрочнение (наклёп), создаваемое в процессе деформации, снимается в результате рекристаллизации в ходе самой деформации.

Задания для выполнения работы

(для подгруппы 2-4 человека)

1 . Для образцов меди, деформированных на 30-40 %, определить температуру рекристаллизации меди по изменению твердости после нагрева на различную температуру (по графической зависимости «твердость – температура»). За центр температурного интервала принять температуру рекристаллизации меди, определенную по формуле А.А. Бочвара. Температурный шаг от центра интервала в сторону уменьшения и увеличения температуры принять 50 ºС.

Сравнить температуру рекристаллизации меди, определенную по формуле А.А. Бочвара, и найденную экспериментально, если они отличаются объяснить причину. Температура плавления меди 1083 ºС.

2. Провести холодную деформацию образцов технически чистой меди на различную степень деформации и определить изменение твердости деформированных образцов в зависимости от степени деформации.

Степень деформации рассчитывается по формуле:

h1

h2

h3

 = (h0hК)·100/ h0, %,

где h0 – толщина образца до деформации,

hК – толщина образца после деформации.

Результаты измерений внести в табл. 1 и построить графическую зависимость твердости от степени деформации.

Таблица 1

п/п

Исходная

толщина h0, мм

Конечная

толщина hК, мм

Степень деформации , %

Твердость,

НВ

Примечание

3. Провести горячую деформацию образцов технически чистой меди на различную степень деформации и определить изменение твердости горячедеформированных образцов в зависимости от степени деформации. Результаты измерений внести в табл. 1 и построить графическую зависимость твердости от степени горячей деформации.

4. Холоднодеформированные образцы меди подвергнуть рекристаллизационному отжигу в течение 10 минут и определить изменение твердости отожженных образцов в зависимости от степени деформации. Результаты измерений внести в табл. 1 и построить графическую зависимость.